
“Computer Vision”
from scratch

Brian Starkey
Pi Wars Mini Conference

October 2019

Slides link on Twitter after the talk #PiWars

https://twitter.com/search?q=%23piwars

Who? BrianS on Discord, @usedbytes, blog.usedbytes.com, hackaday.io

Brian Starkey

Day job: fixed-function pixel processing hardware

Entered Mini Mouse in Pi Wars 2019

● Only camera + compass*

● 3rd overall in Pros category
● Fastest “Hubble Nebula”, 2nd “Blast Off”, 3rd “Canyons of Mars”

*9DoF sensor

Very briefly an introduction to me.

My name’s Brian. For my day job, I work on very low-level software for bits of
pixel-processing hardware

I entered Mini Mouse in Pi Wars 2019, which only has two sensors: a camera and a
compass.

I was really inspired I would say by Piradigm last year, where Mark was able to
basically do everything with a camera. Frankly I didn’t have space for many sensors,
so I was really keen to save space and only have a camera.

I used the camera for all of the autonomous challenges, and it went pretty well. I had
the fastest hubble run overall, and came second and third in the line and maze
challenges, using the algorithms I’ll talk about in a moment.

https://twitter.com/usedbytes
https://blog.usedbytes.com/
https://hackaday.io/usedbytes

The plan?

● What and Why?
● Tools
● Algorithms

○ Thresholding
○ Edge detection
○ Line detection

● Wrap-up

I wanted to do this talk, because I feel like people have this fear of computer vision,
and think it’s some ultra-complex vodoo magic.

In my case, I’m running really really simple operations, which were perfectly adequate
for the challenges this year, so I want to try and show that it doesn’t need to be that
complicated.

I’ll talk a bit about the tools I’m using and then run through the specifics of essentially
all the algorithms Mini Mouse has.

With a varied audience it’s hard to target this talk at everyone, but I hope you all get at
least something out of it.

Also, I’ll need to gloss over a lot of details, but if you want more, I will gladly talk your
ear off afterwards!

“Computer Vision” from scratch?

“Computer Vision”

● Too basic to really count as CV
● But still enough for (last) Pi Wars

From scratch:

● Efficiency and control
● Learning experience
● Go OpenCV bindings are ... immature

As for the title.

“Computer Vision” is in quotes, because I think this stuff is so basic it only barely
qualifies. But still, it was enough for this year’s competition.

From scratch is because I’m not using any libraries like OpenCV. Not because I want
to show off, but because I want to show that you really can understand and write this
stuff yourself without needing to do a PhD thesis.

Tools

Before diving into the computer vision bits, I think it’s worth spending a bit of time
talking about what tools are useful when working on this stuff.

Dedicated HW
Specific functions,

very quickly

Hardware Tools

ISP CPUGPU

Massively parallel
pixel processor

Sequential, general
purpose

Read this page! https://picamera.readthedocs.io/en/latest/fov.html

More Specialised

To start with we can look at the physical processing tools we have available to us.

Inside the main chip on the Pi, there’s three main processing elements which are
relevant for us. You can use all of these as part of your image processing pipeline for
computer vision.

Starting all the way on the left, is the ISP or Image Signal Processor. This is the part
that connects to the physical camera sensor, and it’s packed full of super-specialised
hardware which is there specifically to process images from the camera.

This means it’s limited in what it can do - it can only do some image-processing
related things - but it does those things extremely efficiently.

Because of that, it’s a good idea to check if the ISP can do what you need - for
example resizing or rotating your camera picture, because if you use the ISP to do it,
it’s basically free and won’t slow anything down. I’ll tweet a link to the slides - there’s a
few examples in there of what I mean.

All the way on the right is the CPU. This is the bit we’re all familiar with, and it’s the
least specialised. That means it can do anything, but it won’t do it as fast as

https://picamera.readthedocs.io/en/latest/fov.html

something designed to do just one job. The CPU does things sequentially, one after
the other.

Somewhere in the middle is the GPU, or Graphics processor. This is still a special
piece of hardware, but it’s more general purpose than the ISP. The GPU is a big
parallel processor with a few special bits tacked on for 3D graphics. It’s very good at
doing the same thing to lots of bits of data at the same time, but it’s not very good at
doing things one after the other.

Using the GPU is relatively more complex than the others, but again there’s some
links in my slides if you want to give it a go.

Using the ISP

What for?
As much as possible! If it can do what you want, then use it, because it’s basically free.

Read this page! https://picamera.readthedocs.io/en/latest/api_camera.html

Python cv2 ISP (with Picamera)

cv2.resize(img,(320,340)) camera.capture(resize=(320, 240))

cv2.cvtColor(img, cv2.COLOR_BGR2YUV) camera.capture(format=’yuv’)

cv2.flip(img,1) camera.vflip = True

cv2.blur(img,(2,2))
camera.image_effect=’blur’
camera.image_effect_params = 2

With the ISP, the decision of whether to use it or not is quite simple:

If it can do what you want, you should use it. The camera feed is going through it
anyway, and it’s effectively “free” to turn on any of its functionality.

There’s a few examples in this table of operations in OpenCV and what their
equivalent would be using the ISP via the picamera python API. The most common is
likely to be the resizing, but things like colour conversions, flips, rotation and some
blurring are also possible.

https://picamera.readthedocs.io/en/latest/api_camera.html

Using the GPU

What for?
Per-pixel operations, which don’t depend on (many) others.

Downside: Complex, with lots to learn

Note: Use the direct Camera→GPU texture
fast-path

https://github.com/SanderVocke/picamgpu_minimal

https://github.com/usedbytes/bot_matrix-camera

https://hackaday.io/project/26993-bot-matrix/log/65934-camera-open-gl-es-and-distortion-models

For the GPU, it’s a bit more complicated.

It’s good at doing things where it can work on multiple pixels at the same time - which
means the value of an output pixel shouldn’t depend on too many input pixels.

There’s a fast-path from the camera to the GPU, so on Bot Matrix, I used the GPU to
correct the fish-eye distortion from my camera.

The main downside is you’ll need to learn some OpenGL to use the GPU, and it’s a
pretty steep learning curve.

https://github.com/SanderVocke/picamgpu_minimal
https://github.com/usedbytes/bot_matrix-camera
https://hackaday.io/project/26993-bot-matrix/log/65934-camera-open-gl-es-and-distortion-models

Using the CPU

● Get close using the ISP (and GPU)
● Avoid copies as much as possible
● Use (Y)UV if black-and-white is all you need

○ Reduces the work 3x!

● Reduce your pixel count obsessively!
○ Work scales by a factor of n2

Lastly the CPU - it’s not useless, and some things like “if/else” statements are really
best handled here.

Whatever work you do do on the CPU, my recommendations would be:
* to avoid copying images around if you can help it
* Look in to YUV and using only the’Y’ if you only need a greyscale image. That will
reduce the amount of data you’re processing by a factor of three
* And, reduce the size of your image to the absolute minimum you can. If you halve
the width and height of the image, then you reduce the number of pixels by a factor of
4!

https://en.wikipedia.org/wiki/YUV

Tools

● Photos! Videos!
○ From robot’s eye view - “what does the problem actually look like?”

https://github.com/silvanmelchior/RPi_Cam_Web_Interface

● Prototyping
○ Hack things together to get a feel for the problem

● Testing
○ Look for “ooh, that’s interesting” cases - and capture them!

● Profiling
○ Language-dependent. Go is really great here

For working on computer vision algorithms, if it’s not obvious, you’re really going to
need pictures of the problem you’re trying to solve.

I really like this RPi_Cam_Web_Interface - which lets you grab photos from the Pi via
a web page, without needing to write any code at all. It makes it really easy to get
pictures from your robot’s point of view very early on in development.

You probably also need a way to do some quick hacky prototyping, just to get some
ideas for what works and what doesn’t.

Once you have an idea what your algorithm will be, you need a way to test it, and find
cases where it doesn’t work.

And lastly, maybe you find out your code is too slow, in which case a profiler will help
you to make it faster.

https://github.com/silvanmelchior/RPi_Cam_Web_Interface

Photos Super early

Later, more
representative

Here’s some of my example photos from Mini Mouse.

The top ones were taken with the web interface, before I had any camera code written
for the robot.

They’re much higher resolution than what I eventually used - but they help to get an
idea of how the world looks from the robot’s eyes

The bottom row are captured a few months later via my testing tools and are much
more representative of what the robot is actually using when running.

Prototyping

I played around with Python with OpenCV on a PC

● White line + horizon detection

Don’t worry about speed or efficiency - just play!

Nothing like the eventual solution - but helped me understand the
problem

For prototyping, I spent a couple of evenings playing with OpenCV on my PC, using
the images grabbed from the web interface.

I tried to make two algorithms: One to find a white line for following, and one to find
the horizon to detect walls.

The result was far too slow to actually use on the robot - but it was very quick to write,
and it helped me figure out some ideas for how to approach the challenges.

Testing

Find a way to:

● View what the robot sees, and capture to an image file
● Run the same code on image files and the camera feed
● Ideally, time and/or profile the image processing code

Live Offline

As the robot develops, it’s really useful to spend some time on developing test and
debug tools.

I have two main tools:

The one on the left runs on my laptop and talks to the robot over wifi in real-time. It
sends a live view from the camera, and I can press a button to save the image to my
laptop.

This one also lets me run my processing algorithms on my laptop, using the real
camera feed, which means I can test things without having to copy it over to the robot
all the time.

With this, I can quickly test, and I can keep an eye out for cases where the algorithm
breaks and capture that picture to a file for testing improvements to the algorithm.

The one on the right only runs on image files. So, I can take pictures from the robot
with the first tool, and then work on the algorithms by themselves without needing the
robot running.

Profiling

“Premature optimisation is the root of all evil” - Donald Knuth

1. First, write the algorithm in the most obvious way
○ Make sure that it works

2. Then see how long it takes
3. If it’s too slow, profile it and find out why

○ Focus on making only the slowest parts faster
 ⬑ Repeat

https://stackoverflow.com/questions/582336/how-can-you-profile-a-python-script

https://blog.golang.org/profiling-go-programs

And then the last thing is Profiling.

When you’ve written some algorithms, you might find they’re running too slow.

There’s this famous quote that “premature optimisation is the root of all evil” - and all
this means is that don’t bother optimising anything until you know for a fact it’s too
slow.

If you do find your code is too slow, then a profiler can show you why. On the right is
real output from the Go profiler running on my horizon detection code.

Each box represents a function, and the bigger and redder it is, the slower it is. It
shows me that this “convT2Inoptr” is taking 46.49% of the total time of the program,
and so I know I can make my code twice as fast by somehow avoiding or speeding up
that function.

Quite often, the result can be surprising. This function isn’t actually mine, it’s part of
the core language, and I would have never guessed that particular thing was going to
be so slow.

https://en.wikipedia.org/wiki/Program_optimization#When_to_optimize
https://stackoverflow.com/questions/582336/how-can-you-profile-a-python-script
https://blog.golang.org/profiling-go-programs

Algorithms

OK! That’s all the intro out of the way, let’s talk about some actual algorithms

Thresholding https://blog.usedbytes.com/2018/10/quite-robust-thresholding/

Converting a colour/grayscale image, to a black and white one.

● Darker pixels → Black
● Lighter pixels → White

The meaning of black and white depends
on the input image:

● Cat or not?
● Ball or not?
● Edge or not?

The first of my building blocks is “thresholding”

This is converting an image with lots of different values into one which contains only
black or white - no grey.

The idea is to take all the “darker” pixels and make them black, and all the “brighter”
pixels and make them white. Depending on the image that you feed in, the meaning
of “black” and “white” after thresholding will vary.

In the case on the right, we’ve got a dark kitten on a light background - so after
thresholding, all of our black pixels mean “cat” and all of the white ones mean
“Background”

This is useful to help us throw away information which we don’t need, and just get a
simple answer for each pixel: “cat or not”. Later on we’ll see some practical uses.

By the way - if you check out my blog post there, there’s a great example wasting a
weekend on premature optimisation.

https://blog.usedbytes.com/2018/10/quite-robust-thresholding/

Thresholding

for pixel in image:

 if pixel > 128:

 pixel = 255

 else:

 pixel = 0

Threshold

Really, it’s very simple:

For each pixel in the image, we need to decide if it’s a “bright” pixel or a “dark” pixel,
and convert it to white or black as appropriate.

In this case our “threshold” where we decide if something is “bright” or “dark” is 128.
Anything greater than 128 becomes white, and darker becomes black.

for pixel in image:

 if pixel > 128:

 pixel = 255

 else:

 pixel = 0

Thresholding

Sadly, just saying “anything greater than 128 is bright” runs into problems when the
difference between bright and dark is small - as shown at the top of this picture.

As the background gets lighter, some of the “darker” pixels become greater than 128,
and so they get converted to white and we lose the line

Adaptive Thresholding http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm

Ideas:

● Check proportion of black vs white
○ if (too_much_black) decrease_threshold()

if (too_much_white) increase_threshold()

● Adjust threshold based on local pixel values
● Adjust pixel values, keep a static threshold

One way to fix this is to use adaptive thresholding - where instead of always checking
everything against 128, we try and pick a better number based on “something”.

There’s a bunch of different ways - you could check how many black and white pixels
you have after thresholding. If everything is coming out white, then you should
increase your threshold, to make some of the lighter pixels get turned to black.

Another approach is to us a different threshold for different regions of the image,
based on the pixel values in that region

And the one I went with is to adjust the pixel values in the image so that the darkish
pixels are always much darker than the brightish ones.

http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm

Fixed threshold problem

2550

128

2550

So we have this problem where in some parts of the image, all the pixels are brighter
than the threshold.

We could just move the threshold, but then other parts of the image would end up
being entirely less than the threshold, and come out totally black.

Make the darkest pixel black and the brightest white, and spread out the
rest in-between.

Contrast Expansion

2550

2550

2550

1.

2.

128

The approach I took to solve this, was to adjust each row in the image to make sure
the difference between the darkest and brightest pixel was as big as possible.

That’s a two-step process, first, we shift all of the values in the row down, so that this
minimum value becomes zero.

And then, to increase the difference between dark and bright, we stretch out all the
values to make the brightest one white.

for each row in image:

darkest = min(row)

brightest = max(row)

diff = brightest - darkest

for each pixel in row:

pixel = (pixel - darkest) * (255 / diff)

And then, threshold with 128

Contrast Expansion

1. Make the darkest pixel black 2. Stretch everything else out, making brightest → 255

2550

2550

2550

1.

2.

128

In code, it looks like this:

For each row in the image,

Find the darkest pixel, and find the brightest pixel, then find the difference between
them

Then, for each pixel in the row, shift everything down to make the darkest pixel black,
and then divide by the difference to stretch everything out

Of course, you can achieve the same thing by using the min and max values to
calculate a different threshold for each row, but I preferred this approach to let me use
a global threshold after pre-processing the image.

This is the result.

On the left is the input, with the contrast getting lower towards the top of the image.

In the middle, is how it looks after contrast expansion - the background gets darker,
preserving the bright line.

And on the right is after applying a threshold of 128 to the contrast-expanded image.
It’s not perfect, with a little white spot on the left - but it’s far better than before where
the whole top half of the image was white.

So this thresholding algorithm is all I needed in terms of image processing for the
white line following, but it’s also going to be used as a part of the next algorithms.

Edge Detection

Finding edges is a fundamental operation for identifying “things” in images

Next, we’ll look at edge detection.

If you want to find a “thing” in an image, like this red board, you need to find where it
starts and ends - and that normally means finding edges.

Hopefully you’re mostly familiar - but one of the challenges this year required
identifying these coloured boards in the four corners of a square arena.

What’s an Edge?

Simply put - a difference in value between pixels

● But which pixels?
● And how much difference?
● And how do we measure difference?

First things first, what’s an edge?

It’s basically just a difference between pixels which are near to each other

but we need to decide which pixels to compare, how to compare them, and how
different they need to be to say “yes, this is an edge!”

So this is clearly an edge, but this middle one is less obvious. And of course it doesn’t
have to be black and white - here we’ve got an edge between two different colours.

Find the difference between each pixel and the one to its left

Simple vertical edge detector

－ =

－ =

0 0 0

255 0 255

Here’s a very simple vertical edge detector.

All we do is compare each pixel to the pixel to its left, and store the difference into an
output image.

This is just a black and white image to make it simple, but of course you can compare
colour pixels to each other in the same way, too.

So, for these two pixels - black minus black is black - so the output pixel is black

White minus black is white, so the output pixel is white.

We can do this for every pair of pixels in the image, and that gives us this output with
a white line where the edge was in the input image.

Simple vertical edge detector

for row = range(0, height):

 for column = range(1, width):

 out[row][column] =

abs(in[row][column] - in[row][column - 1])

In code it looks like this, so for each row and each column, we set the output pixel to
the the input pixel minus the pixel on its left.

We need this “abs()” operation here, to make sure that if we have something like
black minus white, we get +255 and not -255.

You’ll also see that we don’t have any values for this column, because we don’t have
anything on the left of these pixels to compare against.

Because we’re comparing left/right pixels, this won’t find horizontal edges. So you can
see here, that there’s definitely a horizontal edge in the input, but the output is totally
black.

Here, there is an edge, but the difference isn’t very big. So we do get this grey line in
the output, but because it’s quite a weak edge, it’s not very bright.

Real Image

If you apply that to a real image, then you can see it’s already doing a pretty good job.

After thresholding

As you may have guessed already, after running the edge detection, we can apply
thresholding to make the weak edges much more pronounced.

Now, anywhere we found a fairly strong edge, we have a white pixel, and everywhere
else is black.

Horizontal edges - compare with pixel above

Of course, if you compare pixels above/below each other, instead of left/right, then
you detect horizontal edges instead of vertical ones.

Note that these diagonal lines show up in both cases - because they have both
horizontal and vertical components.

There are much better and more complex edge detection algorithms you can find, but
this super simple pixel comparison was enough for me for Pi Wars.

Line Detection

“Edges” happen anywhere where there is texture.

“Lines” imply more structure

To find objects, we often want to find
“Lines” rather than simply edges.

Edges

Line

The last thing I want to talk about is lines. We’ve found edges, but that’s really all that
useful.

You find edges anywhere the image has “texture”, like all the speckles at the bottom
caused by marks on the floor.

What we really want to find are “lines” - because the object we’re looking for is a
rectangle made up of lines.

Finding curves, or lines at angles is quite complicated, and there’s much more
sophisticated algorithms for those tasks.

But finding vertical or horizontal lines is pretty easy. And that’s fortunate - because I’m
only interested in finding these two vertical lines at the sides of the board.

So what does a vertical line look like? Well, it just looks like a column here, with lots of
white pixels in.

Vertical Line Detection

Vertical (horizontal) lines are relatively easy to find:

Look for columns (rows) with lots of edges.

+

+
÷ 3 =

+

+
÷ 3 =

Brighter pixels represent longer, more vertical lines

So we simply need to find columns in the image with lots of edges - or lots of white,
after we’ve done edge detection.

If we find the average of each column in the edge-detected image, then the more
edges there are, the higher the average and the more likely it is that we have a
vertical line.

Over here is an example image.

These columns have no edges, so the mean is zero and there can’t be a line
This column has a perfectly vertical line, and so the mean value is white

As the line gets further away from vertical, the mean values of the columns get lower
and so the pixels get darker.

Vertical Lines

Here’s the result running on the “real” image. At the bottom you see the the mean
value of each column, shown bigger on the next slide.

Vertical Line Detection

If the line isn’t perfectly vertical, it “spreads out”:

● Either a “wider” and darker smudge → Makes lines harder to find
● Or maybe even several thin marks → Shows false lines!

Already there’s a couple of possible issues.

We’ve seen that if the line isn’t perfectly vertical, then instead of one bright mean
pixel, we get several darker ones - which makes the line harder to identify

And in this image, the left hand edge gets picked out as two edges, giving two bright
spots in the result. That could make us think that there’s more lines than there really
is.

Vertical Line Detection

We can group columns together

And then threshold!

To help with this, we can tweak the code slightly to group columns together.

Instead of getting an average for each column, we can do it for pairs of columns, or
groups of three.

This blurs lines together, tending towards showing fewer, darker regions - and then
we can apply thresholding to pick out the strongest results - giving this final result with
just two white spots representing the two edges of the red board.

Vertical Line Detection

Finally threshold to find the very strongest lines:

Each group of white pixels
represents a vertical line

And that’s it, right? Mission accomplished. After that’s all done, we’re left with a nice
clean row of pixels, which tells us exactly where the left and right edges of the board
are. And the whole thing only took around 15 minutes to implement!

1) Find edges in the image

First, we found edges by just comparing adjacent pixels

2) Threshold to keep only the strongest

Then, we applied a simple threshold to find the strongest edges

3) Find vertical lines in the edges

Then, add together columns to find vertical lines

4) Threshold to keep only the strongest

And finally, threshold again to find only the longest, most vertical lines.

1. Turn to where you think a corner is
2. Run this algorithm to find board location
3. Sample the middle pixel to find the colour
4. Turn to the next corner

Hubble Challenge

“Where is the board”“What colour is the board”

With those steps, we’ve got everything we need to base a Hubble challenge solution
on

We can turn to where we think the corner is. It doesn’t need to be exact, as long as
the board is in-view of the camera

Then we can run the algorithm, which will tell us exactly where the two edges of the
board are. If needed, we can use that to centre properly on the corner

Then, we can sample the middle of the board to find out its color, and turn to the next
corner.

Wrap Up

So hopefully I haven’t lost you all with my onslaught of diagrams. Let me try and draw
some conclusions.

Conclusions

1. Keep it simple!
a. Pi Wars challenges are well-defined, and well controlled

2. Use the smallest number of pixels possible
a. Line follow: 32 x 32 pixels, grayscale only
b. Maze: 40 x 80 pixels, YUV
c. Hubble: 100 x 100 pixels, YUV

3. Invest time in tools and testing
a. It’s much easier to understand when you can see what’s going on

First and foremost - keep it simple! The challenges for PiWars - at least in the past -
have been quite well-controlled arenas. This means your code doesn’t need to worry
too much about what’s in the background, because it should be pretty plain. You can
make a lot of assumptions, like just looking for the two biggest vertical lines - because
you know exactly what the environment will be.

Use a very small number of pixels. This helps to naturally blur things, which is actually
quite useful, and also makes everything faster. Remember if you halve the width and
height, the number of pixels goes down by a factor of four.

My highest resolution image was 100x100 for the Hubble challenge.

And, really try and invest some time in developing tools. Everything is much easier to
develop and debug when you can actually see what’s going on with the robot in
real-time, instead of trying to guess what went wrong.

Still applicable?

Average

Probably background
Probably a red barrel
… Probably background?

Thanks to @CannonFodder for the image

Luck

Now, Hubble isn’t in the competition next year, I thought I’d have a go at applying my
hubble code to finding barrels, just to see if any of this is still applicable.

I stole this picture from Brian C on twitter. The same algorithm we’ve just looked at
does manage to find two lines around the edges of the barrel, but I think it’s
somewhat down to luck, as the servo stuff would have thrown it off if not for this edge
it finds in the grain of the table.

If you assumed that each vertical line marks the edge of a barrel, then you could split
the image at the lines, and then find the average colour for each segment. From
there, it doesn’t seem too outlandish to identify red and green segments as barrels.

https://twitter.com/CannonFodder/status/1173310622764806144

Still applicable?

Average

Probably background
Probably a white barrel
Probably background

Thanks to @TeamCurrington for the image

This one works a bit better - the barrel is high-contrast against its background, and
there’s really no doubt that the sides of it have been found correctly.

This shows the advantage of having a uniform background (or well-controlled arena
like in Pi Wars) versus trying to find things in the “real world”

https://twitter.com/TeamCurrington/status/1173952604499521537

Still applicable?

Thanks to @PiWarsRobotics and @PiDrogen for the image

Lastly, Mike uploaded this picture of “the real deal”

And this one, fails miserably

Here, the strongest lines in the image, by far, are the bright glare lines from the
camera flash. So, I guess this shows the importance of testing, and having nice even
lighting if possible :-)

https://twitter.com/PiWarsRobotics/status/1177827839560826880

And that’s it, thanks so much for listening!

